If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+20n-32=0
a = 3; b = 20; c = -32;
Δ = b2-4ac
Δ = 202-4·3·(-32)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-28}{2*3}=\frac{-48}{6} =-8 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+28}{2*3}=\frac{8}{6} =1+1/3 $
| 9w-54=-36 | | (23+9)-5x=2 | | 2(2(4+x))+(2x)=68 | | p^2=2p+3 | | a^2+2a=2 | | (3+n)(1+2n)=0 | | -2+4x=9-7x | | b/10-8=-10 | | 2^x=256 | | -7+2p=5p+5 | | 2r+49=-8(-r-5) | | 95-u=290 | | 8x+36=3x-15 | | a/5+2=5 | | 3m=2(m-5+12) | | (n+4)(5n-3)=0 | | -4.7m-9(8.2m-6.1)=9.7-(1.9m+6) | | w^2-4w=60 | | 4x+3=3x+73 | | 20−-2h=-42 | | 168-x=277 | | -5k-5=k+7 | | 5x+4x+15=90 | | m/4+32=40 | | 10x+30=5x+55 | | 3(2h-6)-+2h+1)=9 | | 10^x-5=100000 | | 8v+8=35-v | | 17n-17=20n-29 | | a/1+8=3 | | x-2(2x+3)-1=0.5(4x+28) | | -8(2x-9)=3x-26 |